Nonlinear Structural Optimization for Improved, Rapid Product Design

In the race to get new and innovative products to market faster, manufacturers face many challenges, including globalization, cost reductions, and shorter development cycles. In addition, the products must also meet safety, reliability, environmental and maintenance objectives.

ATOM

The Abaqus Topology Optimization Module (ATOM) delivers advanced capabilities for nonlinear structural optimization, providing engineers and product designers with manufacturable designs which meet the structural needs of a part, while improving performance and reducing costs associated with weight/mass.

ATOM Highlights

Features

• Topology and shape optimization for material nonlinearity and contact
• Generation of smoothed output for CAD input
• Model parameterization is not required
• Utilizes the Abaqus/Standard nonlinear solver
• Pre and postprocessing provided in Abaqus/CAE

Benefits

• Shorter design cycle enables faster time-to-market
• Lower production costs due to weight savings
• Better part-life estimates with targeted peak stress
• Improved product quality with lower failure rates

Linear vs. Nonlinear

When performing topology optimization on a brake pedal, the brake pedal geometry, pin joints for boundary conditions, and pressure loading on the pedal need to be taken into account, with a small amount of displacement expected.

Both the linear and nonlinear topology optimizations resulted in a 50% reduction in part weight.

The linear topology optimization provided a peak stress of 168 MPa, with a lateral displacement of 1.7mm.

Comparatively, the nonlinear topology optimization solver resulted in a structure with 30% less lateral displacement (1.2mm) and 10% lower peak stresses (150 MPa).

ATOM, a nonlinear topology optimization solver, took out-of-plane warping effects into account, providing this automotive supplier with a manufacturable design which will meet the most stringent standards, while outperforming the linear topology optimization design.

The example above shows the progression of a topology optimization as it attempts to maximize the stiffness of a brake pedal while reducing the volume by 50% during 31 design cycles.
Abaqus Topology Optimization Module (ATOM)

ATOM delivers powerful solutions for performing topology and shape optimization for single parts and assemblies, while leveraging advanced simulation capabilities such as contact, material nonlinearity and large deformation. Optimized design proposal can be exported in various CAD-neutral formats.

Topology Optimization

Topology optimization begins with an initial design, which is assumed to be the maximum physical extent of the component, and determines a new material distribution by changing the density and the stiffness of the elements in the initial design while continuing to satisfy the optimization constraints.

ATOM provides users with a choice of objective function terms and constraints, including:

- Minimization of combinations of equivalent stress values
- Shape optimization of contact surfaces for homogeneous contact stress
- Maximization of selected natural frequencies
- Specification of a volume constraint
- Mesh-independent manufacturing constraints for casting, forging, extrusion and drilling
- Minimum and maximum member size
- Rotational and planar symmetry
- Penetration checks to neighboring parts
- Mesh smoothing in each design cycle ensure optimization solution stability

Optimization Design Responses

Volume, mass, compliance, displacements, rotations, volume, mass, reaction forces, reaction moments, internal forces, natural frequencies, center of gravity, moments of inertia, results from frequency response analysis (amplitudes, phases, velocities and accelerations), acoustic measures (surface velocities, sound pressure)

Manufacturing Restrictions

Demolding constraints for casting and forging

Symmetry Restrictions

Rotational, cyclic, planar and linked condition

Material Sizing Restrictions

Minimum, maximum and envelope sizing for wall thickness

All attributes of the finite element model are transferred from one optimization iteration to the next without any user interaction required.

Shape Optimization

Shape optimization begins with a finite element model and minimizes stress concentrations using the results of a stress analysis to modify the surface geometry of a component until the required stress level is reached. Shape optimization then attempts to position the surface nodes of a selected region until the stress across the region is constant.

ATOM provides users with a choice of objective function terms and constraints, including:

- Minimization of combinations of equivalent stress values
- Shape optimization of contact surfaces for homogeneous contact stress
- Maximization of selected natural frequencies
- Specification of a volume constraint
- Mesh-independent manufacturing constraints for casting, forging, extrusion and drilling
- Minimum and maximum member size
- Rotational and planar symmetry
- Penetration checks to neighboring parts
- Mesh smoothing in each design cycle ensure optimization solution stability

Optimized Design Proposal

ATOM provides transformation, smoothing and data reduction of the optimization results. CAD-neutral data can be exported in various CAD-neutral formats.

Optimization Design Responses

Volume, mass, compliance, displacements, rotations, volume, mass, reaction forces, reaction moments, internal forces, natural frequencies, center of gravity, moments of inertia, results from frequency response analysis (amplitudes, phases, velocities and accelerations), acoustic measures (surface velocities, sound pressure)

Manufacturing Restrictions

Demolding constraints for casting and forging

Symmetry Restrictions

Rotational, cyclic, planar and linked condition

Material Sizing Restrictions

Minimum, maximum and envelope sizing for wall thickness

Optimized Design Proposal

ATOM provides transformation, smoothing and data reduction of the optimization results. CAD-neutral data can be exported in either .STL or .INP formats as a surface mesh. This can be used to reconstruct parametric geometry if needed.

Structural optimization is an iterative process that helps to refine designs and produce components that are lightweight, rigid, and durable.

SIMULIA World Headquarters
166 Valley Street
Providence, RI 02909 USA
+1 401 276 4400
E-mail: simulia.info@3ds.com
www.simulia.com