Realistic Simulation of Golf Ball Impact

Xiaohu Liu, David Quinn and Jorgen Bergström

Veryst Engineering LLC
Needham, MA
Why Golf Ball Impact?

- Cool video from U.S. Golf Association (USGA)
 http://www.youtube.com/watch?v=00I2uX DxbaE
- Golf ball hitting a steel plate @ 150mph
Why Golf Ball Impact for an Engineer?

- A challenging problem: Large deformation at very high speed

- A relevant problem: manufacturers strive to maximize performance
Outline

• Realistic impact simulation
 – Material testing and characterization

• Discussion of material model selection
Golf Ball Impact Overview

• USGA Calibration Ball: two-layer construction
 – Cover: Surlyn
 – Core: Polybutadiene

• Core dominates impact behavior
 – Strain rate spans a wide range, as high as 5000 sec\(^{-1}\)
Golf Ball Core Material Characterization

• Need reliable data from a wide range of strain rates
High-Rate Testing of Golf Ball Core

Data Collection

High rate testing of soft polymer materials can be tricky. Auxiliary procedures may be required:
- FE simulation as verification
- Reverse engineering
- Other types of testing

Test set-up:
- Striker speed
- Bar material
- Specimen size

Data handling:
- Data shifting
- Noise removal
- Dispersion correction
Core Material Data

- Use data from literature for comparison
 - Quintavalla and Johnson*
 - Strain rate 0.00003~5332 sec\(^{-1}\)

*Rubber Chemistry and Technology 77, 972 (2004)
Core Material Calibration

• Material model needs to account for:
 – Rate-dependence
 – Large strain
 – Untested strain rates: adaptivity

• Parallel Network Model (PNM)
 – Material behavior characterized by a number of networks
 – Allow highly nonlinear visco-elastic/plastic behaviors
 – Part of the Veryst PolyUMod© Library of polymer UMATs and VUMATs
PNM for Golf Ball Core

• Network 1
 – Eight-chain hyperelastic model with small strain softening

\[
\sigma = \frac{\mu_{\text{eff}}}{J \lambda^*} \frac{\mathcal{L}^{-1}(\lambda^*/\lambda_L)}{\mathcal{L}^{-1}(1/\lambda_L)} \text{dev}[b^*] + \kappa(J - 1)I
\]

\[
\mu_{\text{eff}} = \mu_f + (\mu_i - \mu_f) \left(1 - \exp \left[\frac{-\varepsilon_{\text{eff}}}{\dot{\varepsilon}}\right]\right) \frac{\dot{\varepsilon}}{\varepsilon_{\text{eff}}}
\]
PNM for Golf Ball Core

• Network 2
 – Eight-chain hyperelastic model with power-law viscous flow

\[
\sigma = \frac{\mu}{J\lambda^*} \frac{L^{-1}(\lambda^*/\lambda_L)}{L^{-1}(1/\lambda_L)} \text{dev}[\mathbf{b}^*] + \kappa(J - 1)I
\]

\[
\dot{\gamma}^p = \left(\frac{\tau}{f_p f_{\varepsilon_p} f_{\theta} \dot{\tau}} \right)^m
\]
PNM for Golf Ball Core

• Network 3
 – Eight-chain hyperelastic model with Bergström-Boyce viscous flow

\[\sigma = \frac{\mu}{J \lambda^*} \frac{\mathcal{L}^{-1} (\lambda^*/\lambda_L)}{\mathcal{L}^{-1} (1/\lambda_L)} \text{dev}[b^*] + \kappa (J - 1) \mathbf{I} \]

\[\dot{\gamma}^p = [\lambda_L - 1 + \xi]^C \cdot \left(\frac{\tau}{f_P f_{\varepsilon \dot{\lambda}} f_{\theta \dot{\lambda}}} \right)^m \]
Core Material Calibration

- PNM model can adapt to the wide strain-rate range
Golf Ball FE Model

• Golf ball modeling
 – Multi-layer construction with dimples
 – Parametric model generation via scripting
Impact Simulation
Strain Rate During Impact

• Peak strain rate is below 6000 sec^{-1}
• Strain rate spans a wide range
Material Model Selection

- Calibrate a linear viscoelastic (LVE) model

LVE has difficulty adapting to a wide strain rate range!
Comparison: PNM vs. LVE

- Rebounding behavior
 - LVE under-predicts hysteresis, hence less loss of kinetic energy
Comparison: PNM vs. LVE

• More rebounding behavior
 – Rebounded height at 2ms

PNM

LVE

3.5 inch

2.5 inch
Remarks on Material Model Selection

• LVE works well for:
 – Small-strain deformation
 – Relatively narrow strain-rate range

• It is possible to calibrate LVE to match a particular output for a particular impact case, but to predict realistic behavior under different impact scenarios requires an advanced material model such as PNM

Neither is true for golf ball impact!
Advanced Simulation: Spin Generation

- Oblique impact generates spin
- Requires accurate modeling of ball-club interaction
- Ongoing effort
The Veryst® Mission: Engineering Through The Fundamentals

Veryst Engineering, LLC provides premium engineering services and consulting at the interface of technology and manufacturing. Located in the Boston area, Veryst provides services in product design, manufacturing processes, and failure analysis to firms nationwide. Service is based on technical fundamentals - employing grounded knowledge of mechanics, physics, and manufacturing to produce practical, useful results. Our consultants' backgrounds encompass teaching, extensive publications, industrial experience, and research.

Veryst Engineering is a software partner with Simulia and its Abaqus nonlinear finite element product suite.