Computational Study of Cortical Bone Screw Pullout Using the eXtended Finite Element Method (XFEM)

Emer M. Feerick, J. Patrick McGarry

National University of Ireland Galway, Ireland

15th May, SCC 2012
Fracture in Abaqus

Two Methods Investigated:

1. **Element deletion**
 - Voids nucleate and propagate as elements are removed from mesh

2. **eXtended finite element method (XFEM)**
 - no elements deleted from mesh
 - Elements are split as crack propagates
Orthopaedic Screws

- Orthopaedic screws used for fracture repair at sites throughout body
- Pullout failure mode reported clinically

Experimental Testing

- Monotonic Tensile Pullout Test
- ASTM F543.23096-1
- Test Rate: 5mm/min

Feerick and McGarry, Cortical bone failure mechanisms during screw pullout, Journal of biomechanics (2012) article in press
Experimental Testing

Feerick and McGarry, *Cortical bone failure mechanisms during screw pullout*, Journal of biomechanics (2012) article in press
Cortical Bone Microstructure Model

Material 1: 35% volume
Material 2: 65% volume

Model Details
- Commercial screw geometry
- Screw-bone general contact
- COF 0.3

Cortical Bone Properties:
- Drucker Prager plasticity model
- Damage evolution
- Element deletion

Cortical Bone Plasticity

Drucker Prager Plasticity Model

– Pressure dependent yield
– Isotropic hardening

• Parameters*
 – $K = \text{flow stress ratio}$
 – $\beta = \text{friction angle}$
 – $\Phi = \text{Dilation angle}$

$F = t - p Tan\beta - d = 0$

$d = (1 - \frac{1}{3} Tan\beta)\sigma_y$

[*] Mercer et al, Acta Biomaterialia, 2006; Mullins et al, JMBBM, 2009
Damage Process
Damage Initiation

Shear Criterion

• Predict damage initiation due to shear band localisation.
• Equivalent plastic strain at onset of damage is a function of shear stress ratio & strain rate

Criteria for Damage:

\[\omega_s = \int \frac{d\varepsilon_{pl}}{\varepsilon_{s}^{pl}(\theta_s, \dot{\varepsilon}_{pl})} = 1 \]

\[\theta_s = \frac{(q + k_s p)}{\tau_{max}} \]

\(\theta_s \) = Shear stress ratio
\(q \) = Mises equivalent stress
\(p \) = Pressure stress

\[\varepsilon_{s}^{pl}(\theta_s, \dot{\varepsilon}_{pl}) \]
Damage Evolution

- Characteristic Length: L
- Linear damage evolution
- Damaged elements removed from mesh ($D=1$)

\[G_f = \int_{\bar{\varepsilon}_0}^{\bar{\varepsilon}_f} L\sigma_y d\bar{\varepsilon}^{pl} = \int_0^{\bar{u}^{pl}} \sigma_y d\bar{u}^{pl} \]

\[D = \frac{L\bar{\varepsilon}^{pl}}{\bar{u}^{pl}} \]
Experimental Longitudinal Failure Mode

Feerick and McGarry, *Cortical bone failure mechanisms during screw pullout*, Journal of biomechanics (2012) article in press
Longitudinal Pullout Simulation

Transverse Failure Mode:

- Initial
- Peak Load
- Crack Initiation
- Crack Progress
- Material Detachment
- Final Surface

Feerick and McGarry, Cortical bone failure mechanisms during screw pullout, Journal of biomechanics (2012) article in press
Transverse Pullout Simulation

Limitations

• Mesh Sensitivity
 – Larger elements mean larger voids
Limitations

- Unphysical over-closure between newly exposed surfaces in highly deformed meshes.
Limitations

• Too computationally expensive for 3D microstructure simulations

Transverse 3D Microstructure Model

5.8 million C3D4 Elements
eXtended Finite Element Method (XFEM)

- Mesh Independent
- Enriched elements apply additional displacement functions to selected regions of the mesh
- Contact can be applied between newly exposed surfaces
- Abaqus 6.11 release contained UDM facilitates anisotropic damage criteria
- Can not be used with axisymmetric e
XFEM UDMGINI: Damage Initiation

- Anisotropic elasticity with anisotropic damage criteria
 - Hashin damage tensile criteria (Index 1 & 2)
 - Max principal stress criteria (Index 3)

Failure Index 1: \(\bar{\sigma}_f = \sqrt{\left(\frac{\sigma_{11}}{\sigma_{ff}}\right)^2 + \left(\frac{\sigma_{12}}{\sigma_{f\tau f}}\right)^2} = 1 \)

Failure Index 2: \(\bar{\sigma}_m = \sqrt{\left(\frac{\sigma_{22}}{\sigma_{mf}}\right)^2 + \left(\frac{\sigma_{12}}{\sigma_{m\tau f}}\right)^2} = 1 \)

Failure Index 3: \(\bar{\sigma}_p = \frac{\sigma_p}{\sqrt{\sigma_{ff}^2 \cos^2 t + \sigma_{mf}^2 \sin^2 t}} = 1 \)

- \(\bar{\sigma}_f \) is the fiber damage initiation criterion
- \(\sigma_{ff} \) is the UTS of the fiber
- \(\sigma_{f\tau f} \) is the shear failure strength of the fiber
- \(\bar{\sigma}_m \) is the fiber damage initiation criterion
- \(\sigma_{mf} \) is the UTS of the matrix
- \(\sigma_{m\tau f} \) is the shear failure strength of the matrix
XFEM UDMGINI : Crack Propagation

- **FNORMAL**: Array of defining the normal direction to the fracture line (2D) for each failure index.

- Crack propagates based on energy dissipation (*Damage Evolution*)

\[
\text{Failure Index 1: } \bar{\sigma}_f = \sqrt{\left(\frac{\sigma_{11}}{\sigma_{ff}}\right)^2 + \left(\frac{\sigma_{12}}{\sigma_{ff}}\right)^2} = 1
\]

\[
\text{Failure Index 2: } \bar{\sigma}_m = \sqrt{\left(\frac{\sigma_{22}}{\sigma_{mf}}\right)^2 + \left(\frac{\sigma_{12}}{\sigma_{mf}}\right)^2} = 1
\]

\[
\text{Failure Index 3: } \bar{\sigma}_p = \frac{\sigma_p}{\sqrt{\sigma_{ff}^2 \cos^2 t + \sigma_{mf}^2 \sin^2 t}} = 1
\]

- \(F_{normal} (n, 1) = \text{ori}(n, 1) \)

- \(F_{normal} (n, 2) = \text{ori}(n, 2) \)

- \(F_{normal} (n, 3) = \text{an}(n_{max}, n) \)
Calibration for Cortical Bone

- Asymmetric 4PB
 - Mode 2 / Mixed Mode
- Symmetric 4PB / 3PB
 - Mode 1

Calibration for Cortical Bone

- Simulations (Index 1&2) validated by experiments
 - Crack Patterns
 - Fracture Energy

Department of Mechanical & Biomedical Engineering

* Zimmerman et al (2009) j.biomaterials
Calibration for Cortical Bone

- Introduce index 3
 - Crack deviates from vertical

Mode 1 Phase 0°

Hashin Failure Index
Index 1 & 2

Maximum Principal Stress
Index 1, 2 & 3

Department of Mechanical & Biomedical Engineering

* Zimmerman et al (2009) j.biomaterials
Application: 2D Screw Pullout

- **Longitudinal 0°**
 - Osteon alignment

- **Transverse 90°**
 - Osteon alignment

- **45°**
 - Osteon alignment
Application: 2D Screw Pullout

- Longitudinal: 0°
- Transverse: 90°
- 45°

Osteon alignment
Application: 2D Screw Pullout

Pullout Force (F_p) increases with increasing osteon angle.

Normalised Pullout Force (F_p/F_{pT}) versus Osteon Angle (θ)

Feerick et al (2012)

Application: 3D Screw Pullout

- Investigate the effect of the helix
- And other unsymmetric features

Cutting Flute

Helical Geometry
Application: 3D Screw Pullout

Osteon Alignment

0 °
(Longitudinal)

90 °
(Transverse)

45 °

183,552 C3D4 Elements
Application: 3D Screw Pullout

Osteon Alignment

0 °
(Longitudinal)
Application: 3D Screw Pullout

Osteon Alignment
90° (Transverse)
Application: 3D Screw Pullout

Osteon Alignment

45°
Pullout Force (F_p) increases with increasing osteon angle.

Normalised Pullout Force (F_p / F_{pT}) versus Osteon Angle (θ)
Summary

- XFEM predicts crack patterns compared to microstructure models
- Lower computational expense for 3D simulations